The search functionality is under construction.

Keyword Search Result

[Keyword] channel estimation(293hit)

181-200hit(293hit)

  • Power Control of Turbo Coded System in Rayleigh Fading Channel

    Sung-Joon PARK  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E90-B No:1
      Page(s):
    144-147

    We propose reallocating the power resource among the code symbols in such a way to minimize the post decoding error probability of turbo code. We consider several power reallocation policies and investigate their performance in slowly-varying Rayleigh flat fading channel. We show that the proposed scheme can reduce the post decoding error probability by two orders of magnitude and provide a power gain of 0.86 dB at BER=10-6 over the traditional equal power allocation among all code symbols. We also propose applying different power levels and cut-off thresholds on systematic and parity check bits depending on the channel gain, and investigate the effect of channel gain estimation error.

  • Channel Estimation in Comb-Type Pilot Arrangements for OFDM Systems with Null Subcarriers

    Jihyung KIM  Sangho NAM  Daesik HONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:12
      Page(s):
    3458-3462

    This letter analyzes the degradation effect of null subcarriers in orthogonal frequency domain multiplexing (OFDM) systems on the time-domain maximum likelihood (ML) estimation performance. The analysis is used as the basis for a proposal for a channel estimation method that can overcome performance degradation caused by null subcarriers. The accuracy of the proposed method is confirmed by the numerical analysis.

  • Iterative Decision Feedback Channel Estimation Using Metrics Comparison for Burst Mode COFDM Transmission

    Haruhito YOSHIDA  Fumiaki MAEHARA  Fumio TAKAHATA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:12
      Page(s):
    3475-3478

    This letter presents an iterative decision feedback channel estimation scheme for burst mode COFDM transmission. The feature of the proposed scheme is that the channel estimation using metrics comparison is applied to the initial stage of the iterative mechanism, which makes it possible to provide a reliable data stream at the initial stage. Computer simulation results show that the proposed approach provides better BER than the traditional iterative decision feedback channel estimation scheme irrespective of the number of iterations.

  • Capacity Bound of MIMO Systems with MPSK Modulation and Time-Multiplexed Pilots

    Yifei ZHAO  Ming ZHAO  Yunzhou LI  Jing WANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:9
      Page(s):
    2629-2632

    In this letter, we elucidate the ergodic capacity of multiple-input multiple-output (MIMO) systems with M-ary phase-shift keying (MPSK) modulation and time-multiplexed pilots in frequency-flat Rayleigh fading environment. With linear minimum mean square error (LMMSE) channel estimation, the optimal pilots design is presented. For mathematical tractability, we derive an easy-computing closed-form lower bound of the channel capacity. Based on the lower bound, the optimal power allocation between the data and pilots is also presented in closed-form, and the optimal training length is investigated by numerical optimization. It is shown that the transmit scheme with equal training and data power and optimized training length provides suboptimal performance, and the transmit scheme with optimized training length and training power is optimal. With the latter scheme, in most situations, the optimal training length equals the number of the transmit antennas and the corresponding optimal power allocation can be easily computed with the proposed formula.

  • Iterative QRM-MLD with Pilot-Assisted Decision Directed Channel Estimation for OFDM MIMO Multiplexing

    Koichi ADACHI  Riaz ESMAILZADEH  Masao NAKAGAWA  

     
    PAPER

      Vol:
    E89-A No:7
      Page(s):
    1892-1902

    Multiple-input multiple-output (MIMO) multiplexing has recently been attracting considerable attention for increasing the transmission rate in a limited bandwidth. In MIMO multiplexing, the signals transmitted simultaneously from different transmit antennas must be separated and detected at a receiver. Maximum likelihood detection with QR-decomposition and M-algorithm (QRM-MLD) can achieve good performance while keeping computational complexity low. However, when the number of surviving symbol replica candidates in the M-algorithm is set to be small, the performance of QRM-MLD degrades compared to that of MLD because of wrong selection of surviving symbol replica candidates. Furthermore, when channel estimation is inaccurate, accurate signal ranking and QR-decomposition cannot be carried out. In this paper, we propose an iterative QRM-MLD with decision directed channel estimation to improve the packet error rate (PER) performance. In the proposed QRM-MLD, decision feedback data symbols are also used for channel estimation in addition to pilot symbols in order to improve the channel estimation accuracy. Signal detection/channel estimation are then carried out in an iterative fashion. Computer simulation results show that the proposed QRM-MLD reduces the required average received Eb/N0 for PER of 10-2 by about 1.2 dB compared to the conventional method using orthogonal pilot symbols only.

  • Accurate Channel Estimation Method for Frequency Domain Equalization on cdma2000 High Rate Packet Data System

    Noriaki MIYAZAKI  Toshinori SUZUKI  Shuichi MATSUMOTO  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E89-A No:7
      Page(s):
    2063-2071

    In order to improve the forward link capacity of cdma2000 HRPD (High Rate Packet Data) or CDMA2000 1xEV-DO, it is significant to overcome multi-path interference. This paper focuses on FDE (Frequency Domain Equalization) with MMSE (Minimum Mean Square Error) criterion. On top of that, backward compatibility with HRPD should be maintained, in other words common channels such as the pilot channel should not be changed. Thus, the PN (Pseudo Noise) spread pilot block without CP (Cyclic Prefix) signals has to be dealt with for FDE. However, this will cause the conventional channel estimation accuracy to deteriorate. In order to improve the estimation accuracy of the conventional method, this paper presents a MRC (Maximal Ratio Combining) spectrum estimator, IPI (Inter-Path Interference) canceller, and path searcher. The results obtained from computer simulations reveal that the proposed method can improve the PER (Packet Error Rate) performance significantly. If compared with Rake combiner and TDE (Time Domain Equalization) with NLMS (Normalized Least Mean Square) scheme, the maximum data rates at a fixed PER of 1% can be increased by 5 to 8 times and 1.25 to 2.67 times, respectively.

  • Channel Estimation for OFDM-Based WLANs in the Presence of Wiener Phase Noise and Residual Frequency Offset

    Yong-Hwa KIM  Jong-Ho LEE  Seong-Cheol KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:5
      Page(s):
    1709-1712

    In orthogonal frequency-division multiplexing (OFDM)-based wireless local area networks (WLANs), phase noise (PHN) and residual frequency offset (RFO) can cause the common phase error (CPE) and the inter-carrier interferences (ICI), which seriously degrade the performance of systems. In this letter, we propose a combined pilot symbol assisted and decision-directed channel estimation scheme based on the least-squares (LS) and the maximum-likelihood (ML) algorithms. Simulation results present that the proposed scheme significantly improves the performance of OFDM-based WLANs.

  • Constant Modulus Based Blind Channel Estimation for OFDM Systems

    Zhigang CHEN  Taiyi ZHANG  Yatong ZHOU  Feng LIU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:5
      Page(s):
    1705-1708

    A novel blind channel estimation scheme is proposed for OFDM systems employing PSK modulation. This scheme minimizes the number of possible channels by exploiting the constant modulus property, chooses a best fit over the possible channels by exploiting the finite alphabet property of information signals, and achieves competitive performance with low computational complexity. Results comparing the new scheme with the finite-alphabet based channel estimation are presented.

  • Pilot Symbol Aided MAP-Based 3D Channel Estimation for Multi-User MIMO-OFDM Systems

    Junyi WANG  Kiyomichi ARAKI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:3
      Page(s):
    801-808

    This paper describes a novel pilot symbol aided up-link channel estimation scheme for a multi-user MIMO-OFDM system. A novel pilot-symbol pattern is proposed in order to overcome the interference from the multiple antennas of each user. Based on these periodically inserted pilot symbols, the channel state information (CSI) for each entire OFDM data sequence is reconstructed by using the maximum a-posteriori probability (MAP) estimation algorithm. The MAP estimation algorithm exploits channel correlations in time, frequency and space domains, which are obtained from a frequency-selective and time-variant Rayleigh fading channel model with multiple clusters and a defined complex direction of arrival (DOA). Simulation results demonstrate that it achieves almost the same performance as the ideal case by using the MAP-based estimation scheme with the well designed pilot-symbol pattern. Moreover, this model-based estimation scheme is also robust to errors in the estimation of its parameters. It will become one of the strong candidates for use in next generation mobile communication systems.

  • An Adaptive Frame-Based Interpolation Method of Channel Estimation for Space-Time Block Codes in Moderate Fading Channels

    Gabriel Porto VILLARDI  Giuseppe Thadeu Freitas de ABREU  Ryuji KOHNO  

     
    PAPER-Communications

      Vol:
    E89-A No:3
      Page(s):
    660-669

    The application of Orthogonal Space-Time Block Codes (O-STBC) as the encoding scheme in the presence of "non-quasi-static" fading was considered. A simple and efficient adaptive method of channel estimation based on the interpolation of estimates acquired at the pre-amble and post-amble of framed blocks of information is developed. Moreover, the proposed method is proven, both theoretically and by simulations, to outperform the alternative of channel tracking, despite its significant low complexity.

  • Iterative ICI Mitigation Method for MIMO OFDM Systems

    Rong CHEN  Youyun XU  Haibin ZHANG  Hanwen LUO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:3
      Page(s):
    859-866

    In this paper, we propose an ICI mitigation method for MIMO OFDM using turbo detection technique. In order to reduce the computational complexity, we present a method for dividing the received frequency-domain signals into subbands and the manner of division varies with each iteration, joint soft ICI cancellation and decoding is then performed on each subband. To perform iterative ICI mitigation, the estimation of the time-variant channel using a great quantity of pilot tones is needed, which results in poor spectral efficiency. We then propose a method to reduce the required scatter pilot tones, which is differentially-modulated-pilot scheme. Moreover, the estimation can be constructed based on EM-type algorithms to further reduce the computational complexity. Finally, the results of computer simulations demonstrate that the proposal can provide significant performance improvement.

  • Design and Performance of an LDPC-Coded FH-OFDMA System in the Uplink Cellular Environments

    Yun Hee KIM  Kwang Soon KIM  Sang Hyun LEE  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:3
      Page(s):
    828-836

    An LDPC-coded FH-OFDMA system is proposed for the uplink of a packet-based cellular system, where the frequency hopping (FH) is based on a resource block (RB) for coherent demodulation. For the system, different RB types are employed either for better intercell interference (ICI) averaging capability or for better channel estimation performance. For the receiver, practical iterative channel estimation and decoding methods are proposed to improve the channel estimation performance without boosting the pilot power and to mitigate the adverse effects of the ICI. Extensive simulation results are provided to show the effect of the RB size on the channel estimation and ICI averaging performance as well as possible application of the proposed receiver in harsh mobile environments with dynamic packet allocation.

  • Channel Estimation with Selective Superimposed Pilot Sequences under Fast Fading Environments

    Fumiaki TSUZUKI  Tomoaki OHTSUKI  

     
    PAPER-Antennas and Propagation

      Vol:
    E89-B No:2
      Page(s):
    556-563

    Recently, superimposed pilot channel estimation has been proposed for wireless communications, where the pilot symbol sequence is superimposed on a data symbol sequence and transmitted together, and thus there is no drop in information rate. In this scheme, the receiver correlates the received signal sequence with the pilot symbol sequence, and obtains the channel estimate. However, the correlation between the pilot symbol sequence and the data symbol sequence deteriorates the channel estimation accuracy. The use of the longer frame leads to the lower correlation, but also to the lower channel tracking capability. In this paper, we propose a selective superimposed pilot channel estimation scheme with selecting a pilot sequence that has a low correlation with a data symbol sequence from the set of the pilot sequences assigned to the transmitter. Note that the superimposed channel estimation scheme with one pilot sequence assigned to the transmitter is the conventional superimposed channel estimation scheme. We show that the proposed channel estimation scheme is superior to the conventional superimposed channel estimation scheme (pilot sequence = 1). We also show that the proposed channel estimation scheme can achieve the good channel estimate even under fast fading environments. Moreover, we show that the proposed channel estimation scheme is superior to the pilot assisted channel estimation scheme, although pilot symbol power is a deterioration factor in the proposed channel estimation scheme.

  • An Equalization Technique for OFDM Systems in Fast-Fading Multipath Channels at Low SNR

    Bin SHENG  Yuying ZHOU  Xiaohu YOU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:2
      Page(s):
    618-620

    In this letter, a novel channel estimation method is proposed for frequency-domain equalization of OFDM systems in fast fading multipath channels. It is shown by computer simulations that the proposed method can not only estimate the channel impulse response (CIR) accurately but also achieve lower BER than conventional method at low signal-to-noise ratio (SNR).

  • Iterative Demodulation of M-Ary Orthogonal Signaling Formats in Coded DS-CDMA Systems with Soft Interference Cancellation and Channel Estimation

    Pei XIAO  Erik STROM  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:1
      Page(s):
    150-161

    The system under study is a convolutionally coded and orthogonally modulated DS-CDMA system over time-varying frequency-selective Rayleigh fading channels in multiuser environments. Iterative soft demodulation and decoding using the Turbo principle can be applied to such a system to increase the system capacity and performance. To combat multiple access interference (MAI), we incorporate the interference cancellation (IC) and decision-directed channel estimation (CE) in the demodulator. However, both IC and CE are subject to performance degradation due to incorrect decisions. In order to prevent error propagation from the decision feedback, soft interference cancellation and channel estimation assisted demodulation is proposed in this paper. The performance of this strategy is evaluated numerically and proved to be superior to the hard decision-directed approach with a minor increase in complexity.

  • Pilot Patterns for OFDM Communication Systems in a Fast Time-Varying Channel

    Yeon Ju LIM  Deok Soo HYUN  Sang Kyu PARK  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:1
      Page(s):
    243-246

    In this letter, we focus on rearranged pilot patterns for channel estimation in a mobile communication system using Orthogonal Frequency Division Multiplexing (OFDM). The conventional pilot patterns for channel estimation in OFDM systems do not have robust characteristics in time-varying channels. In order to overcome this weakness of the conventional pilot patterns, we propose the pilot patterns with robust mobility for OFDM systems, which can achieve a good error performance in time-varying multi-path fading channels. Simulation results show that the bit error rate (BER) performances of the proposed pilot patterns are better than those of the conventional pilot patterns in fast time-varying fading channels under the same pilot density and data rate.

  • Coefficients--Delay Simultaneous Adaptation Scheme for Linear Equalization of Nonminimum Phase Channels

    Yusuke TSUDA  Jonah GAMBA  Tetsuya SHIMAMURA  

     
    PAPER-Digital Signal Processing

      Vol:
    E89-A No:1
      Page(s):
    248-259

    An efficient adaptation technique of the delay is introduced for accomplishing more accurate adaptive linear equalization of nonminimum phase channels. It is focused that the filter structure and adaptation procedure of the adaptive Butler-Cantoni (ABC) equalizer is very suitable to deal with a variable delay for each iteration, compared with a classical adaptive linear transversal equalizer (LTE). We derive a cost function by comparing the system mismatch of an optimum equalizer coefficient vector with an equalizer coefficient vector with several delay settings. The cost function is square of difference of absolute values of the first element and the last element for the equalizer coefficient vector. The delay adaptation method based on the cost function is developed, which is involved with the ABC equalizer. The delay is adapted by checking the first and last elements of the equalizer coefficient vector and this results in an LTE providing a lower mean square error level than the other LTEs with the same order. We confirm the performance of the ABC equalizer with the delay adaptation method through computer simulations.

  • A Novel Low Complexity Channel Estimator with Frequency Offset Resistance for CDMA

    Jungwoo LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:12
      Page(s):
    4667-4670

    A new channel estimator that does not require a separate frequency offset estimator is proposed. The new algorithm has low complexity and low latency compared to the well-known weighted multi-slot averaging algorithm. The simulation results demonstrate the improved resistance to high Doppler frequency and high frequency offset.

  • A Velocity Estimation-Based Channel Estimator for WCDMA Forward Link Receiver

    Joo-Hyun DO  Hyung-Jin CHOI  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E88-B No:11
      Page(s):
    4373-4377

    In this letter, we propose a new practical architecture of channel estimator that can compensate for the signal distortion due to variable mobile station velocity in WCDMA forward link. The proposed Channel Estimator consists of IIR filter for channel estimation and Velocity Estimator for selection of IIR filter coefficients matched to mobile station velocity. The combination of IIR filter and Velocity Estimator can overcome the divergence problem of IIR filter due to the mobile station velocity. The Velocity Estimator estimates the speed of mobile station velocity by observing power spectrum of the received signal and exhibits stable operation in low SNR environment. To improve the resolution of velocity estimation without additional complexity due to large FFT size, an interpolator is adopted in the velocity estimator. The proposed channel estimation architecture can not only be used for WCDMA forward link but also is applicable for CDMA-2000 system without major modifications. Also, the Velocity Estimator can be applied in the channel quality measurement for the selection of MCS (Modulation and Coding Scheme) level in HSDPA transmission.

  • Capacity Bound of MIMO Systems with MPSK Modulation and Superimposed Pilots

    Yifei ZHAO  Ming ZHAO  Jing WANG  Yong REN  

     
    PAPER-MIMO System

      Vol:
    E88-A No:10
      Page(s):
    2937-2944

    The enormous capacity potential of multiple-input multiple-output (MIMO) is based on some unrealistic assumptions, such as the complete channel state information (CCSI) at the receiver and Gaussian distributed data. In this paper, in frequency-flat Rayleigh fading environment, we investigate the ergodic capacity of MIMO systems with M-ary phase-shift keying (MPSK) modulation and superimposed pilots for channel estimation. With linear minimum mean square error (LMMSE) channel estimation, the optimal pilots design is presented. For the mathematical tractability, we also derive an easy-computing closed-form lower bound of the channel capacity. Furthermore, the optimal power allocation between the data and pilots is investigated by numerical optimization. It is shown that more power should be devoted to the data in low SNR environments and to the pilots in high SNR environments.

181-200hit(293hit)